
J. Fluid Mech. (2006), vol. 547, pp. 21–53. c© 2006 Cambridge University Press

doi:10.1017/S002211200500649X Printed in the United Kingdom

21

Leading-edge receptivity by adjoint methods

By FLAVIO GIANNETTI1† AND PAOLO LUCHINI2
1Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for

Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
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The properties of adjoint operators and the method of composite expansion are used
to study the generation of Tollmien–Schlichting (TS) waves in the leading-edge region
of an incompressible, flat-plate boundary layer. Following the classical asymptotic
approach, the flow field is divided into an initial receptivity region, where the unsteady
motion is governed by the linearized unsteady boundary-layer equation (LUBLE),
and a downstream linear amplification area, where the evolution of the unstable mode
is described by the classical Orr–Sommerfeld equation (OSE). The large x̄ behaviour
of the LUBLE is analysed using a multiple-scale expansion which leads to a set of
composite differential equations uniformly valid in the wall-normal direction. These
are solved numerically as an eigenvalue problem to determine the local properties
of the Lam and Rott eigensolutions. The receptivity coefficient for an impinging
acoustic wave is extracted by projecting the numerical solution of the LUBLE onto
the adjoint of the Lam and Rott eigenfunction which, further downstream, turns into
an unstable TS wave. In the linear amplification region, the main characteristics of
the instability are recovered by using a multiple-scale expansion of the Navier–Stokes
equations and solving numerically the derived eigenvalue problems. A new matching
procedure, based on the properties of the adjoint Orr–Sommerfeld operator, is then
used to check the existence and the extent of an overlapping domain between the two
asymptotic regions. Results for different frequencies are discussed.

1. Introduction
Among all possible linear mechanisms that are apt to excite Tollmein–Schlichting

(TS) waves, the leading-edge mechanism is probably one of the most extensively
studied in the last decade. The first quantitative explanation of the wavelength
conversion process that takes place in the leading-edge area and tunes the unsteady
disturbances in the free stream to the appropriate length-scale of the instability is
due to the work of Goldstein (1983) and Ruban (1984). Performing an asymptotic
analysis of the linearized Navier–Stokes equations (LNSE) in terms of the small triple-
deck parameter εg = F 1/6 � 1, with F = ω�ν�

∞/U�
∞

2, Goldstein found that the unsteady
motion in the boundary layer contains two different asymptotic streamwise regions.
In the leading-edge area, where x̄ ≡ ω�x�/U�

∞ ∼ O(1), the vertical dependence of the
pressure fluctuations is negligible and the unsteady motion is governed, at leading
order, by the linearized unsteady boundary-layer equations (LUBLE). In the second
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region, downstream of the leading edge, for x̄ ∼ O(ε−2
g ), the correct asymptotic

approximation of the LNSE is given by a modified Orr–Sommerfeld equation (OSE),
whose solutions near the neutral branch develop, in the limit of εg → 0, a triple-
deck structure appropriate to interacting boundary layers. Where the two regions
overlap, the behaviour of the LUBLE for x̄ → ∞ must be asymptotically matched
to the behaviour of the OSE for ε2

g x̄ → 0. Lam & Rott (1960, 1993) and Ackerberg
& Phillips (1972) studied the asymptotic behaviour of the LUBLE for x̄ → ∞.
Exploiting its parabolic nature, they found that in the far field, the unsteady motion
can be expressed as

ψ̄(x̄, ỹ) ∼ ψ̄p(x̄, ỹ) +
∑

n

Cnψ̄c,n(x̄, ỹ), (1.1)

where ỹ ≡ (ω�/ν�)1/2y� and ψ̄p is a particular solution depending only on the local
characteristics of the imposed outer inviscid flow, while ψc,n are an infinite set of
asymptotic eigenfunctions which account for the initial conditions. Their analytical
form was determined for the first time by Lam & Rott (1960) through a matched
asymptotic expansion and subsequently corrected by Goldstein (1983) to account for
non-uniform mean-flow effects. They develop a two-layer structure consisting of a
main inviscid layer of width η = ỹx̄−1/2 ∼ O(1), and an inner viscous layer of width
η ∼ O(x̄−1/2).

According to the asymptotic analysis, the characteristic wavelength of the
eigenfunctions shortens proportionally to x̄−1/2 in the streamwise direction. Goldstein
showed that this wavelength-reduction process produces at x̄ ∼ O(ε−2

g ) significant
wall-normal pressure variations which invalidate the boundary-layer approximation.
In this region, the flow field is locally parallel and the unsteady perturbation turns
out to be described by the classical large-wavenumber small-frequency approximation
of the OSE, properly corrected to include non-parallel effects. Goldstein, using triple-
deck theory, was able to find analytical asymptotic solutions of this equation. He
showed that in the limit of εg → 0, the two asymptotic streamwise regions of the
boundary layer have an overlap domain in which the eigenfunctions of the LUBLE
match, in the sense of matched asymptotic expansion, the solutions of the OSE. There
is one LUBLE eigensolution for each TS wave, but only the first one, ψ̄c,1, turns into
a mode apt to become unstable further downstream. Since the whole process is linear,
the final amplitude of the unstable TS wave is proportional to the coefficient of the
first Lam & Rott (LR) eigenfunction: thus, the external disturbance enters into the
determination of the TS amplitude only through C1, which for this reason is called
the receptivity coefficient.

The value of the receptivity coefficient is determined by the specific behaviour of the
unsteady motion in the region x̄ ∼ O(1) and can be extracted only by performing a
comparison between a numerical solution of the LUBLE and the asymptotic analytical
form of the first Lam & Rott mode. Goldstein, Sockol & Sanz (1983) extracted
C1 for an incoming acoustic wave travelling parallel to the plate direction, while
Heinrich (1989), Heinrich & Kerschen (1989) and Kerschen, Choudhari & Heinrich
(1990) considered several types of free-stream disturbance, including convected gusts
and a von Kármán vortex street passing above the boundary layer. Hammerton &
Kerschen (1996, 1997) extended these calculations to a parabolic geometry in order
to determine the effects of nose bluntness on the acoustic-receptivity coefficient. All
these investigations were focused on the incompressible regime and restricted to simple
geometric configurations, such as a flat plate or a parabola, for which an analytical
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form of the Lam & Rott eigensolutions is either known or is easily determined
through classical perturbation techniques. Fedorov (2003), using an asymptotic model
developed by Fedorov & Khokhlov (1991, 1993), evaluated the receptivity for an
acoustic wave impinging on a supersonic flat-plate boundary layer, showing that at
high speed, both stable modes and the second Mack mode play a fundamental role
in the process.

Extending these results to more complex flow geometries and to subsonic regimes
is difficult and often requires lengthy and complex algebraic manipulations. In many
cases, furthermore, the lack of suitable analytical expressions for the inviscid external
flow field or the impossibility to find closed-form solutions of the asymptotic equations
require a numerical determination of the properties of the eigenfunctions. Under these
circumstances, two possible routes can be identified.

The first one is based on a fully numerical approach to the receptivity problem
and involves determining the solution of the complete LNSE through accurate and
efficient numerical schemes. In this manner, finite-Reynolds-number effects, which are
usually difficult to estimate within an asymptotic approach, can be fully determined.
The possibility of evaluating the TS amplitude through a direct numerical simulation
of the Navier–Stokes equations (NSE) has been shown, among others, by Casalis,
Gouttenoire & Troff (1997), Haddad & Corke (1998), Erturk & Corke (2001),
Wanderley & Corke (2001), Zhong (2001) and by Ma & Zhong (2003a, b). The first
four papers investigate the receptivity mechanism in incompressible flows for different
types of leading-edge geometries, while the last three deal with the receptivity over a
parabolic body or a flat plate in the supersonic regime. Despite the great potential of
this method, its large memory requirements and high computational costs restrict its
use to simple geometric configurations and to a certain range of Reynolds numbers
which is often of poor practical interest. A detailed review of numerical and theoretical
results is given by Saric, Reed & Kerschen (2002).

The second way, instead, consists in adopting a mixed approach in which standard
asymptotic techniques are applied to the LNSE to derive simplified equations which
are then solved numerically to determine the properties of the asymptotic solutions.
Thus, we avoid the difficulties associated with a full numerical treatment of the
receptivity problem and, at the same time, retain the advantages of an asymptotic
approach. In this context, we have developed a new numerical procedure based on
the properties of the adjoint operators, which can be successfully used to extract the
receptivity coefficient and to estimate the extension of the matching region at small but
finite values of the frequency parameter. This new technique is used here to study the
acoustic receptivity of an incompressible flat-plate boundary layer, but can be easily
implemented in more complex flow configurations or in a compressible-fluid setting.

In this paper, starting from the problem formulation, we derive the parallel stability
equations from the incompressible Navier–Stokes equations by applying a standard
multiple-scale analysis. Studying the solution of the OSE in a region close to the lead-
ing edge, we then derive a streamwise bound for the validity of the stability equations.
A complementary asymptotic approximation of the Navier–Stokes equations is then
developed in the leading-edge area; the asymptotic solutions of the resulting governing
equations are studied numerically through a multiple-scale technique and a composite
expansion procedure. The properties of the associated eigenfunctions are described
and the eigenvalues compared with the analytic solutions found by Lam & Rott. The
receptivity coefficient for an acoustic wave propagating parallel to the plate is then
extracted by performing a numerical integration of the governing equations in the
complex–x̄ plane and projecting the resulting solution onto the adjoint of the Lam &
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Figure 1. Acoustic waves impinging on a flat-plate boundary layer.

Rott mode which turns into an unstable TS wave far downstream. The properties of
the higher modes are briefly discussed and the implication of their existence pointed
out. A new matching procedure based on the adjoint eigenfunctions of the OSE
is developed to estimate the range of validity of the leading-edge complementary
approximation and to evaluate the extension of the overlap domain at small but finite
values of F . Finally, this new technique is used to extract the TS amplitude at the
second neutral branch for different values of the frequency parameter.

2. Problem formulation
We consider an infinite two-dimensional flat plate of zero thickness aligned to a

parallel uniform stream of velocity U�
∞. Here and in the following sections, a star

identifies dimensional quantities. A weak free-stream perturbation is impinging on the
plate (see figure 1) producing a small-amplitude response inside the boundary layer.
The flow is described by the usual two-dimensional time-dependent Navier–Stokes
equations and the frequency of the unsteady disturbance is taken to be small enough
for the mean flow to support unstable TS waves. The disturbance enters the boundary
layer at the leading edge and is there scattered by the non-uniform rapidly varying
mean flow. The scattered field contains, among others, the correct wavelength to excite
the instability waves which, as a result, appear downstream in the locally parallel
region (in the picture indicated as the OSE region). If the amplitude of the external
perturbation is small enough, the generation is a linear process and can be studied
using linear theory. A monochromatic source, considered in a linear approximation,
gives rise to a TS wavetrain of the same frequency, because in this case the dependence
of all the fluid parameters on time can be separated from the very beginning when
posing the initial-value problem. We therefore decompose the total unsteady field as
the sum of a steady mean part and a small unsteady monochromatic perturbation of
non-dimensional frequency ω = ω�L�/U�

r as

Û (x, y, t) = U (x, y) + εp u(x, y)eiωt , (2.1a)

V̂ (x, y, t) = V (x, y) + εp v(x, y)eiωt , (2.1b)

P̂ (x, y, t) = P (x, y) + εp p(x, y)eiωt . (2.1c)
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Here, the hat denotes time-dependent quantities, Û and V̂ represent the horizontal and
vertical components of the total velocity field, P̂ is the pressure and εp denotes a small
parameter (|εp| � 1). Introducing (2.1a) in the governing equations and linearizing, we
obtain two problems describing, respectively, the spatial evolution of the steady mean
flow (U, V, P ) and of the perturbation (u, v, p). In particular, the steady flow turns
out to be described by the steady NSE, while the unsteady perturbation is governed
by the linearized Navier–Stokes equations (LNSE)

iωu +
∂(2Uu)

∂x
+

∂(Uv + V u)

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
, (2.2a)

iωv +
∂(Uv + V u)

∂x
+

∂(2V v)

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
, (2.2b)

∂u

∂x
+

∂v

∂y
= 0. (2.2c)

Equations (2.2a) are made dimensionless with respect to a reference velocity U�
r , a

reference length scale L�
r and a pressure scale ρ�

∞U�2
r , with ρ�

∞ indicating the free-stream
value of the density. The dimensionless parameter Re appearing in the equations is
the Reynolds number based on L�

r and is defined as

Re =
U�

r L�
r

ν�
∞

, (2.3)

where ν�
∞ denotes the kinematic viscosity. Both the steady NSE and the LNSE must

be supplemented with suitable boundary conditions. In particular, on the surface
of the plate, which is assumed to have its leading edge centred at x = 0, y = 0, the
no-slip and no-penetration conditions require both the steady and unsteady velocity
components to vanish (U = V = u = v = 0), while far away from the plate we assume
that

U (x, y) → 1, V (x, y) → 0, (2.4a)

u(x, y) → u∞(x, y), v(x, y) → v∞(x, y), (2.4b)

where u∞(x, y) and v∞(x, y) are the far-field values of the impinging unsteady
disturbance. Although both the steady and unsteady problems can, in principle,
be solved by a direct numerical simulation, this will not be attempted here. Making
use of asymptotic techniques, we will derive simplified equations which describe
the asymptotic behaviour of the NSE and which can be more easily solved either
analytically or numerically.

3. Notation
For a flat-plate boundary layer, a convenient choice to non-dimensionalize the

governing equations is to identify the reference velocity U�
r with the free-stream

value U�
∞ and to take as the reference length scale L�

r either a given distance x�
r

from the leading edge, a characteristic boundary-layer thickness δ�
r =

√
x�

r ν
�
∞/U�

∞ or
the convective length scale l�c = U�

∞/ω�. Since in this paper we study the receptivity
problem separating the flow field into various asymptotic regions where different types
of approximation and scalings hold, it is convenient to use more than one choice of L�

r

and employ different notations for each. In particular, we adopt lower case letters (as
x, y, α, ω, . . . ) and lower case over-barred letters (as x̄, ȳ, ᾱ, . . . ) to indicate quantities
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Boundary layer Convective Base flow Tollmein–Schlichting Lam & Rott
thickness scale scale wavelength wavelength

δ�
r ≡

√
x�

r ν

U�
∞

��
c ≡ U�

∞
ω�

��
B ≡ x�

r ��
T S ��

LR

Table 1. Characteristic scales.

Re Rx F Sr ε τ ε1 ε2

δ�
r U

�
∞

ν�
Re2 ω�ν�

U�
∞

2

ω�x�
r

U�
∞

1

Re

1

Sr

��
T S

��
B

��
LR

��
B

Table 2. Dimensionless parameters.

x y x̄ ȳ ỹ X X1 X2

x�

δ�
r

y�

δ�
r

x�

��
c

y�

��
c

y�

√
ω�

ν�
εx ε1x ε2x̄

Table 3. Dimensionless quantities.

non-dimensionalized, respectively, on the characteristic boundary-layer thickness δ�
r

and on the convective wavelength ��
c , while the symbols X, X1, X2 are used to indicate

the rescaled streamwise coordinate (see tables 1, 2, 3 for details). The non-dimensional
frequency parameter F , defined as the inverse of the Reynolds number based
on ��

c ,

F =
ω�ν�

∞
U�2

r

, (3.1)

is related to the common Reynolds numbers Re and Rx , respectively based on the
boundary-layer thickness δ�

r and on the distance from the leading edge x�
r , by

Sr = F Re2 = F Rx, (3.2)

where the Strouhal number Sr is defined as

Sr =
ω�x�

r

U�
∞

. (3.3)

According to (3.2), the two limiting processes F → 0 and Re → ∞ are equivalent
if Sr ∼ O(1): in particular when Sr = 1 we obtain Re ≡ 1/

√
F and x̄ ≡ X. Linear

stability theory shows that unstable TS waves are supported by the mean flow only
if F is below a certain threshold which is usually small: thus, without any loss of
generality, we will assume F � 1. In this case, a viscous length smaller than l�c enters
into play and a re-scaled vertical coordinate,

ỹ =
1√
F

ȳ ≡ y�
√

ω�/ν�, (3.4)

is sometime used to describe the properties of the unsteady viscous boundary layer
better. Choosing Sr = 1 implies that ỹ ≡ y. Other symbols used in this paper and
appearing in tables 1, 2 and 3 will be introduced in due course. Finally, the action of
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a given functional g on an element f is indicated with the standard notation

g(f ) = 〈g , f 〉 =

∫ ∞

0

g f dy, (3.5)

while the adjoint L† of a differential operator L is defined as the unique operator
satisfying

〈v , L u〉 − 〈L†v , u〉 = 0 (3.6)

for any pair of suitable differentiable real or complex fields u and v. Equation (3.6)
is supposed to hold in the distribution sense, where for distributions we intend
functionals on a suitable space of test functions.

4. Mean flow
For Re 
 1, the steady flow can be approximated using Prandtl’ s boundary-layer

theory. On introducing the small parameter ε = Re−1 and the slow variable X = εx,
the inner expansion of the boundary-layer approximation can be written in terms of
the stream function Ψ as

Ψ (X, y) = Ψ0(X, y) + εΨ1(X, y) + h.o.t. (4.1)

If (4.1) is introduced in the steady NSE rewritten in terms of Ψ , the solution of the
leading-order problem can be written as

Ψ0(X, y) =
√

Xf (η), (4.2)

where η = y/
√

(X) is the similarity variable and f satisfies the well-known Blasius
equation

f ′′′ + 1
2
ff ′′ = 0,

f (0) = f ′(0) = 0,

f ′(η) → 1 asη → ∞.


 (4.3)

Higher-order correction terms can be found solving the second-order inner and outer
problems (Van Dyke 1964). In particular, Goldstein (1956, 1960) showed that for
a semi-infinite flat plate, Ψ1 vanishes and the inner solution (4.2) is accurate up to
O(ε2 log (ε−1)). In this case, the steady solution of the Navier–Stokes equations takes
on the form

U (X, y) = UB(X, y) + O(ε2 log (ε−1)), (4.4a)

V (X, y) = εVB(X, y) + O(ε3 log (ε−1)), (4.4b)

P (X, y) = O(ε2 log (ε−1)), (4.4c)

where UB(X, y) ≡ ∂Ψ0/∂y = f ′(η) and VB(X, y) ≡ −∂Ψ0/∂X = 0.5 [ηf ′(η)−f (η)]/
√

X.
Blasius’ equation (4.3) is solved numerically using a fourth-order Runge–Kutta scheme.

5. The OSE region: a finite-Reynolds-number approach
The receptivity takes place in the leading-edge area, where the external unsteady

perturbation penetrates into the boundary layer and is there scattered by the rapidly
developing mean flow. This process excites TS waves which, as a result, appear
in the quasi-parallel region located further downstream. Here, the base flow (4.4)
evolves on a characteristic length scale much larger than the typical wavelength of
the perturbation, so that a multiple-scale approximation (Bender & Orszag 1978;
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Hinch 1994) can be used to study the evolution of the instability. Roughly speaking,
two different procedures are available to perform such an asymptotic analysis. One
possibility is to use a classical asymptotic approach in which all the flow quantities
are approximated using Poincaré expansions (see Hinch 1994, p. 25). In the present
case, this procedure leads to a singular problem and to a multi-deck formulation: the
boundary layer is divided into different vertical regions which are treated separately
after re-scaling the dependent and the independent variables. A compound solution is
then derived through the theory of matched asymptotic expansions. For example, in
the vicinity of the lower branch of the neutral curve, the flow field develops a typical
triple-deck structure (Stewartson 1969, 1974; Smith 1979a, b) consisting of an outer
irrotational deck of O(Re3/4δ�

r ), an inviscid but rotational main deck of O(δ�
r ) and

an inner viscous layer of O(Re1/4δ�
r ). The triple-deck expansion, although formally

correct, converges (in an asymptotic sense) too slowly to be used for quantitative
predictions in common practical applications: the leading-order term of the series,
in fact, rarely provides the necessary accuracy when the Reynolds number is only
moderately large. Moreover, the expansion is not uniformly valid in the streamwise
direction: it can be shown, in fact, that near the upper branch of the neutral curve, the
boundary layer develops a more complex five-deck structure (Bodonyi & Smith 1981),
where a different set of scalings applies. The multi-deck approach is the preferred
route when an exact or approximate analytical solution of the problem is desired.
On the other hand, when a simple numerical solution is sought, a more convenient
approach consists in using a composite asymptotic expansion, i.e. an expansion in
which both the gauge functions and their coefficients (which are themselves functions
of the non-limiting variables) depend on the asymptotic parameter (Hinch 1994,
p. 25; Van Dyke 1964, p. 195). For singular problems, this procedure leads to
simplified equations which are uniformly valid over the entire domain and which can
be solved with standard numerical techniques. In this way the difficulties and the
technicalities involved with the classical multi-deck approach are easily bypassed. By
its own nature, this type of expansion is not unique since a certain freedom is left
in setting up the leading and the higher-order problems. This approach has been
successfully adopted by Gaster (1974) and by Saric & Nayfeh (1975) to study the
streamwise evolution of the TS waves on a flat-plate boundary layer. Bottaro &
Luchini (1999) used a similar procedure to study the instability of Görtler vortices.

In this paper, we shall rely on the second approach, which is easier to use and is
more accurate at moderate Reynolds numbers. In order to perform a multiple scale
analysis we define a new expansion parameter ε1 as the ratio of the two main length
scales occurring in the problem, i.e.

ε1 =
��

T S

��
B

. (5.1)

Here, ��
B ≡ x�

r is the characteristic scale over which the base flow experiences an O(1)
change, while ��

T S is the characteristic wavelength of the perturbation. A classical
multi-deck approach (Stewartson 1969, 1974; Smith 1979a, b; Bodonyi & Smith
1981) shows that ��

T S is asymptotically larger than the boundary-layer thickness
δ�
r , but asymptotically smaller than the convective wavelength ��

c . More precisely,
��

T S ∼ Re−q ��
c ∼ Req δ�

r , where the value of q varies from 1/4 in the proximity of the
lower branch of the neutral stability curve to 1/10 on the upper branch. Gaster (1974)
and Saric & Nayfeh (1975) in deriving their stability equations assumed ��

T S ∼ δ�
r

and ��
T S/�

�
c ∼ O(1), a choice which leads to ε1 = ε � 1 and ω ∼ O(1). In this paper,

instead, in order to derive an asymptotic approximation which is uniformly valid both
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in the streamwise and cross-stream directions, we take ε1 � 1 with ε1 ∼ O(ε), but
without further assumptions on the relative order of magnitude of the two parameters.
We then perform a multiple-scale expansion non-dimensionalizing the LNSE (2.2a)
on the local boundary-layer thickness δ�

r and seeking a short-wavelength asymptotic
solution of the form

q(X1, y) = exp (−iφ(X1)/ε1)
∑

n

qn(X1, y; ε1) εn
1 , (5.2)

where the slow variable X1 = ε1x is kept O(1) in the limit ε1 → 0. Note that expansion
(5.2) depends on both ε1 and ε, owing to the base flow dependence on the Reynolds
number. For our purpose, it is not necessary to provide an explicit relation between
the two asymptotic parameters since, as Govindarajan & Narasimha (1997, 1999,
2001) and Narasimha & Govindarajan (2000) showed, such a link is required only
to derive more accurate approximations which are, however, not required in this
paper. In (5.2), q = [u, v, p]t is the vector containing the field components, while φ

is a function of X1 to be determined during the asymptotic procedure. Introducing
(5.2) and the base flow expansion (4.4) in the governing equations, retaining at most
terms of O(ε) and collecting like powers of ε1, we are left with the following series of
problems describing the evolution of the perturbation inside the boundary layer
O(ε0

1 )

HOS(α, ω, Re) q0(X1, y) = 0, (5.3a)

u0, v0, p0 → 0 as y → ∞, (5.3b)

u0 = v0 = 0 at y = 0, (5.3c)

O(ε1
1 )

HOS(α, ω, Re)q1(X1, y) = −M(α, Re, ε1)q0 − L(α, Re)
dq0

dX1

, (5.4a)

u1, v1, p1 → 0 as y → ∞, (5.4b)

u1 = v1 = 0 at y = 0. (5.4c)

Here,

α =
dφ

dX1

(5.5)

is the wavenumber of the perturbation, HOS(α, ω, R) is the classical Orr–Sommerfeld
operator and L(α, Re) and M(α, Re, ε1) are operators accounting for the slow
streamwise growth of the boundary layer whose explicit form is given in detail
in Appendix A. Equation (5.3a), with its homogeneous boundary conditions, is an
eigenvalue problem for the determination of the eigenvalue α and its corresponding
eigenvector q0. It is well known that, for a given Reynolds number Re, the OSE admits
only a finite number of discrete eigenvalues. Grosch & Salwen (1978, 1981) showed
that, in addition to the discrete spectrum, the operator HOS admits a continuous
spectrum composed of bounded eigenfunctions which are not square-integrable in
y. These generalized modes decay in the streamwise direction, so that they can be
ignored in a receptivity context. For a fixed frequency, the number of discrete modes
supported by the mean flow usually increases with the Reynolds number. Among
them only one becomes unstable (i.e. its eigenvalue has a positive imaginary part:
α(i) > 0) in a certain region of the frequency–Reynolds number plane: this mode
represents the unstable TS wave.
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The solution of the vector equation (5.3) determines the leading-order term of
expansion (5.2) up to an arbitrary function of the streamwise coordinate X1. Writing

q0(X1, y) = A(X1)u0(X1, y) + O(ε1, ε), (5.6)

where u0 is a convenient normalization of the eigenfunction, we can uniquely
determine the amplitude function A(X1) by imposing a solvability condition on
the second-order problem (5.4). This is, in fact, a singular problem and therefore a
solution exists only if the forcing term on the right-hand side of (5.4) belongs to the
kernel of the adjoint solution v0, i.e. if〈

v0, L(α, Re)
dq0

dX1

+ M(α, ε1, Re)q0

〉
= 0. (5.7)

Using (5.6) to solve (5.7) and expressing the results in terms of the slow streamwise
variable X, the leading-order approximation of the LNSE assumes the following form

qn(X, y) = An(Xi)u0,n exp

[
− i

ε

∫ X

Xi

κndX

]
+ O(ε1, ε), (5.8)

where the subscript n refers to the mode number, Xi denotes some given initial
streamwise position, An(Xi) is the value assumed by the amplitude An at that location
and where the wavenumber

κn ≡ αn + �αn = αn − ε1 i

〈
v0, L

du0

dX1

+ Mu0

〉

〈v0, Lu0〉 (5.9)

accounts for non-parallel mean-flow effects. In a similar way, it is possible to show
that

q†
n(X, y) = v0,n exp

[
i

ε

∫ X

X0

κndX

]
+ O(ε1, ε) (5.10)

represents the approximate solution of the adjoint problem governed by the adjoint
linearized Navier–Stokes operator. It should be noted that these solutions have been
derived without any particular assumption on the relative order of magnitude of ε1

and ε. A more accurate result can be obtained if a link between the two asymptotic
parameters is provided. Such a relation always be can retrieved at a given streamwise
position from a numerical investigation of the eigenvalue problem (5.3).

6. Numerical solution of the Orr–Sommerfeld equation
The stability equations (5.3) are discretized by fourth-order central differences over

a smoothly varying mesh in which the pressure p is staggered by a half y step with
respect to u and v. The two second-order momentum equations are collocated at the
same position as u and v, while the first-order continuity equation is discretized at the
pressure nodes. The resulting algebraic equations are recast in the matrix formulation

H(α, ω,Re) u = 0, (6.1)

where H represents now a block penta-diagonal banded matrix and u is a vector
containing all the unknowns at their respective grid locations. It is useful here to
retain the notation employed for the continuous problem: in this way, in fact, most
of the equations derived in the previous section continue to hold after discretization,
provided that each term is properly interpreted. The wall boundary conditions are
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Figure 2. First mode eigenvalue and its correction for different values of ω. Both wavenumber
and frequency are non-dimensionalized on the boundary-layer thickness. The Reynolds number
corresponding to each line increases in the arrow’s direction according to the sequence
Re = 230, 302, 420, 580, 850, 1250, 1750, 2000.

inserted in the first rows of matrix H, while the last rows account for the analytically
determined asymptotic behaviour of (5.3a) as y → ∞. The resulting algebraic problem
is solved numerically by a variant of the classical inverse-iteration algorithm to
determine the eigenvalue α and the right and left (adjoint) eigenvectors u and v.

Some results used to validate the code are given in figure 2, which shows the
wavenumber α of the unstable mode and its non-parallel correction �α for different
values of the flow parameters. Note that �α is not an absolute quantity but depends on
the particular normalization used: here, the right and left eigenvectors are normalized
requiring

|u(y)|max = 1; 〈v, Lu〉 ≡
〈

v, i
∂HOS

∂α
u
〉

= 1. (6.2)

7. LUBLE and Lam & Rott eigenfunctions
The asymptotic expansion (5.2) and consequently the stability equations (5.3) and

(5.4) become invalid when the expansion parameter ε1 assumes O(1) values, i.e. when
α ∼ O(ε). In order to locate better the region where this occurs, it is convenient to
assume an a priori estimate for the perturbation wavelength �T S . Numerical solutions
of the OSE at different frequencies show that ��

T S/�
�
c ∼ O(1), an estimate which was

also used by Saric & Nayfeh (1975) and which is confirmed by the more refined
results obtained through the multi-deck approach. Assuming such scaling, it is now
easy to show that the OSE is surely not valid in the region of the flow field where

Sr ≡ ω�x�
r

U�
∞

∼ O(1), (7.1)
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i.e. at distances from the leading edge comparable to the convective wavelength.
In this area of the boundary layer, ω ∼ O(ε) while F ∼ O(ε2). The parallel-flow
assumption is invalid there since the base flow evolves rapidly in the streamwise
direction. Terms accounting for the vertical mean flow velocity component, neglected
in the derivation of the OSE, must be included at leading order if the flow has to
be resolved properly. In order to study the receptivity process without relying on
a full numerical simulation of the LNSE, we proceed by simplifying the governing
equations with a complementary asymptotic approximation. The limits for which this
new approximation must be found are:

d

dx
� d

dy
, (7.2a)

ε � 1 with Sr ∼ O(1). (7.2b)

From (7.2a), the perturbation has different evolution scales in the streamwise and
vertical direction, while (7.2b) with (3.2) shows that the Reynolds number based on
the convective length scale is large and consequently viscous effects are confined in a
small layer close to the wall. In order to derive a new set of equations describing the
evolution of the perturbation in the leading-edge area, we therefore use a boundary-
layer approximation, whose inner expansion assumes the usual form

u = u0 + εu1 + ε2u2 + . . . , (7.3a)

v = ε[ṽ0 + ε2ṽ1 + ε2ṽ2 + . . .], (7.3b)

p = p0 + εp1 + ε2p2 + . . . . (7.3c)

Introducing (7.3) into (2.2a), rescaling the streamwise coordinate as x = X/ε and
passing to the limit ε → 0 while holding Sr ∼ O(1), we obtain at leading order the
following unsteady linearized boundary-layer equations (LUBLE):

i Sr u0 +
∂u0

∂X
UB +

∂UB

∂X
u0 +

∂u0

∂y
VB +

∂UB

∂y
ṽ0 = −∂p∞

∂X
+

∂2u0

∂y2
, (7.4a)

∂p0

∂y
= 0, (7.4b)

∂u0

∂X
+

∂ṽ0

∂y
= 0, (7.4c)

with initial and boundary conditions given by

u0 = ṽ0 = 0 at y = 0 (X > 0), (7.5a)

u0 → u(e)
∞ (X), p(e)

0 → p∞(X) as y → ∞ (X > 0), (7.5b)

u0(X, y) = uin(y) at X = 0 ∀y. (7.5c)

Note that the solution of (7.4) does not depend on the particular value of Sr which is
only determined by the non-dimensionalization used. In particular, when ��

c is taken
as the reference length scale, we obtain Sr = 1, x̄ ≡ X and y ≡ ỹ. Although this is the
most convenient choice, we retain here the formal parameter Sr since this will be useful
in setting up a multiple-scale expansion of the LUBLE using the approach adopted
for the OSE. In the following zero the, subscripts, referring to the leading-order
term in (7.3), will be neglected for notation convenience. The functions u(e)

∞ (X) and
p(e)

∞ (X) are, respectively, the slip velocity and the pressure distribution imposed by the
external inviscid problem governed by the linearized unsteady Euler equations, while
uin(y) is an appropriate initial condition used to solve the PDE. The LUBLE are a set
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of parabolic partial differential equations whose streamwise asymptotic behaviour is
expressible as the sum of a particular solution, which depends on the characteristics
of the outer inviscid field, and a series of asymptotic eigenfunctions, which account
for the imposed initial conditions. Here, the characteristics of these asymptotic flow
components are studied using a multiple-scale approximation which allows us to
derive a uniformly valid composite ordinary differential equation describing the local
properties of the unsteady motion. In order to perform the asymptotic analysis, we
assume that downstream of the leading edge, in a region where τ ≡ Sr−1 � 1, the
unsteady perturbation evolves on a length scale ��

LM much smaller than the typical
evolution scale ��

B ≡ x�
r of the base flow. Introducing the small parameter ε2

ε2 =
��

LR

��
B

� 1 (7.6)

and the scaled variable X2 = ε2x̄ = ε2SrX, we rewrite (7.4) in the compact vectorial
notation

ε2D
∂ q̃
∂X2

+ [ B1(Sr) + ε2B2(Sr, ε2) ]q̃ = h̃, (7.7)

where q̃ ≡ [u, ṽ, p]t is the vector containing all the unknowns, h̃ =
[−ε2(∂p∞/∂X2), 0, 0]t is a forcing term and D, B1 and B2 are operators whose
explicit form is given in Appendix B. In order to determine the characteristics of the
Lam & Rott eigenfunctions we assume now ε2 ∼ O(τ ) without specifying any further
relation between the two parameters. We then seek a homogeneous solution of (7.7)
by imposing a multiple-scale expansion of the form

q̃(X2, y) = exp(−iΘ(X2)/ε2)
∑

n

q̃n(X2, y, ε2) εn
2 as ε2 → 0, (7.8)

Note that expansion (7.8) depends formally on both parameters ε2 and τ . Substituting
(7.8) into (7.5) and collecting like powers of ε2, we obtain the following problems
describing the far-field behaviour of the LUBLE:
O(ε0

2 )

[ B1(Sr) − iᾱD ]q̃0(X2, y) = 0, (7.9a)

u0, p0 → 0 as y → ∞, (7.9b)

u0, ṽ0 = 0 at y = 0, (7.9c)

O(ε1
2 )

[ B1(Sr) − iᾱD ]q̃1(X2, y) = −B2(Sr, ε2)q̃0 − D
dq̃0

dX2

(7.10a)

u1, p1 → 0 as y → ∞ (7.10b)

u1, ṽ1 = 0 at y = 0, (7.10c)

where

ᾱ =
dΘ

dX2

(7.11)

is the wavenumber of the perturbation non-dimensionalized on the convective length
scale ��

c . The system (7.9) represents, once again, an eigenvalue problem whose
solutions are the celebrated Lam & Rott eigenfunctions. With the specific ᾱ obtained
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from (7.9), the second-order problem (7.10) is singular and the solvability condition,〈
ṽ0, B2ũ0 + D

dũ0

dX2

〉
= 0, (7.12)

must be imposed in order to guarantee the existence of the solution. The adjoint
eigenvector ṽ0 ≡ ũ†

0 satisfies the adjoint problem, which is derived applying the
definition (3.6) to the operator [B1 − iᾱD] and integrating by parts. Setting

q̃0(X2, y) = C(X2)ũ0(X2, y) + O(ε2, τ ), (7.13)

where ũ0 indicates some suitable normalization of the eigenvector, solving (7.12) and
expressing the results in terms of the slow variable X = τ x̄, the solution of problems
(7.9) and (7.10) can be expressed as

q̃(X, y) = C(Xi) exp

[
− i

τ

∫ X

Xi

κ̄dX

]
︸ ︷︷ ︸

T (LR)(X)

ũ0 + O(ε2, τ ). (7.14)

Here, Xi = τ x̄i is some given initial position, C(Xi) is the value of the amplitude at
X = Xi and the wavenumber

κ̄ = ᾱ + �ᾱ = ᾱ − iε2

〈
ṽ0, D

dũ0

dX2

+ B2ũ0

〉
〈
ṽ0, Dũ0

〉 , (7.15)

includes now non-parallel mean-flow effects. The determination of the Lam & Rott
eigenfunctions with this procedure is easy and does not require the detailed knowledge
of the asymptotic structure of the base flow. Also, it offers in a single step a uniformly
valid asymptotic approximation to the cost of the numerical solution of an eigenvalue
problem. Using previous results, the solution of the LNSE in the leading-edge area
can be expressed as

qn(X, y) = Cn(Xi) u0,n exp

[
− i

ε

∫ X

Xi

κndX

]
+ O

(
ε2, τ, F

1/2
)
, (7.16)

with κn = εκ̄n/τ and u0,n = [u0,n, εṽ0,n, 0]t and where the index n refers to the mode
number.

8. Properties of the LUBLE eigenfunctions
The governing equations describing the behaviour of the Lam & Rott eigensolutions

represent a classical generalized linear eigenvalue problem. Modes belonging to this
class satisfy ‘biorthogonality relations’ deriving from the properties of the adjoint op-
erators (Morse & Feshbach 1953, p. 884). In particular, using a proper normalization
for the right-hand and left-hand eigenvectors of the LUBLE, we can write

〈
ṽ0,n, Dũ0,m

〉
=

∫ ∞

0

ṽ0,n · Dũ0,mdy = δm,n, (8.1)

where the second index refers to the mode number and δm,n is the Kronecker delta
symbol. Equation (8.1) can be extended to define biorthogonality relations among
all the eigenfunctions, including those belonging to the continuous spectrum of the
operator [B1 − iᾱD]. The continuous modes of the LUBLE are characterized by a
horizontal velocity component which does not decay in the wall-normal direction,
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but remains bounded as y → ∞; this property is often useful to model free-stream
disturbances entering the boundary layer (for example the Stokes shear-wave solution
can be interpreted as a continuous mode). Following a procedure similar to that
used by Grosch & Salwen (1978) for the OSE modes, we can show that the discrete
and continuous eigenfunctions of the LUBLE (here indicated by the superscript (c))
satisfy the biorthogonality relations〈

ṽ0,n, Dũ(c)
0,k

〉
=
〈
ṽ

(c)
0,k, Dũ0,n

〉
= 0, (8.2)〈

ṽ
(c)
0,k, Dũ(c)

0,k′

〉
=
〈
ṽ

(c)
0,k′, Dũ(c)

0,k

〉
= δ(k − k′), (8.3)

where δ(k − k′) denotes the Dirac functional. These properties allow us to use the
adjoint field like a filter. Suppose we have a numerical solution q̃num of the parabolic
equation (7.7) for some given initial and boundary conditions. Then, sufficiently far
downstream of the leading edge (for x̄ 
 1), if non-parallel corrections are negligible,
we can express q̃num as the sum of the discrete modes ũ0,n plus an integral on the
path Γk over which the continuous spectrum is defined, i.e.

q̃num(X, y) ∼
∑

n

Cn(Xi)ũ0,n exp(−iΘn(X, Xi)/τ ) +

∫
Γk

Bk ũ(c)
0,k exp(−ik̂X) dk̄ + O(ε2, τ ),

(8.4)

where according to (7.14) Θn(X, Xi) =
∫ X

Xi
κ̄n dX. If we are interested in the coefficient

of the kth discrete mode, we can now project q̃num onto the kth adjoint eigenfunction:
in this way, using the biorthogonality relations (8.1), (8.2) and (8.3), we obtain〈

q̃†
0,k, Dq̃num

〉
≡
〈
ṽ0,k exp(−iΘk(X, Xi)/τ ), Dq̃num

〉
(8.5)

∼
∑

n

Cn(Xi)δk,n + O(ε2, τ ) = Ck(Xi) + O(ε2, τ ).

Grosch & Salwen (1978) used a similar technique to extract the coefficients of the Orr–
Sommerfeld modes from an unsteady perturbation evolving in a parallel base flow. In
the OSE case, the derivation of the biorthogonality conditions is slightly more com-
plicated since the underlying eigenvalue problem is nonlinear. In practice, this difficulty
is overcome by reducing the original system to a linear eigenvalue problem through
the introduction of extra equations. The augmented system takes on a suitable form
to derive the biorthogonality relations from the properties of the adjoint operators.

9. LUBLE eigenfunctions: numerical results
Equation (7.9a) is discretized by fourth-order central differences in y on a smoothly

varying mesh with the same scheme adopted for the OSE. The second-order horizontal
momentum equation is represented at integer collocation points, while the first-
order continuity equation is discretized at non-integer collocation points. The vertical
momentum equation is reduced by the boundary-layer approximation to the simple
equation

∂p

∂y
= 0, (9.1)

which can be solved to give p(X, y) = 0. The resulting system of algebraic equations
is recast in the matrix formulation

[B1 − iᾱk D]ũk = 0, (9.2)
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where B1 and D are now block penta-diagonal banded matrices and ũk is a vector
containing the unknowns at different grid locations. The homogeneous boundary
conditions (7.9c) are inserted in the first two rows of the matrix B1, while at the
upper bound of the computational domain the analytical asymptotic solution of (7.9)
is enforced to close the system of equations. Right and adjoint eigenvectors and their
corresponding eigenvalues are searched with the inverse-iteration algorithm and a
study of the sensitivity of the results to the width of the computational domain is
performed to detect spurious modes. The eigenfunctions are normalized requiring
that |u(y)|max = 1 and setting 〈ṽ, Dũ〉 = 1. It is now convenient to express all the
results in terms of quantities non-dimensionalized on the convective wavelength ��

c ,
i.e. assuming τ = 1. With this choice, the asymptotic solution (7.14) can be rewritten
as

q̃0,n(x̄, y) = Cn(x̄0) exp

[
−i

∫ x̄

x̄0

κ̄n dx̄

]
ũ0,n(x̄, y). (9.3)

This expression is the vectorial counterpart of the LR asymptotic eigensolutions
whose analytical form is given by Goldstein (1983) in term of the perturbation
streamfunction ψ̄ as

ψ̄n = C(G)
n x̄τn

[
g0,n + x̄−3/2g1,n + . . .

]
exp

[
−2λnx̄

3/2

3U ′
0

]
as x̄ → ∞. (9.4)

Here, C(G)
n are undetermined coefficients depending on the initial condition imposed

to solve the LUBLE, while the functions gn,0 are given by

gn,0 =




−i

√
2U ′

0

λn

+
√

2x̄f ′(η) + O
(
x̄−3/2

)
for η ∼ O(1),

√
2U ′

0

∫ σ

0
(σ − σ̌ )w(σ̌ ) dσ̌∫ ∞

0
w(σ̌ ) dσ̌

+ O(x̄−3/2) for η ∼ O
(
x̄−1/2

)
.

(9.5)

In the previous equations, the following definitions were used

U ′
0 ≡ f ′′(0) = 0.33205, (9.6a)

λn ≡ e−7/4πiρ−3/2
n , (9.6b)

w(σ ) ≡ Ai[(i − λnσ )iρn], (9.6c)

σ ≡
√

x̄η = ỹ, (9.6d)

τn = −889 − 16ρ3
n

1260
, (9.6e)

where −ρn denotes the nth root of the first derivative of the Airy function Ai. Com-
paring the multiple-scale solution (9.3) with the analytical form of the eigenfunctions
given above and taking into account the different time dependence used,† it is possible
to identify the wavenumber κ̄(x̄) with the simple analytical expression

κ̄ (G)
n (x̄) ≡ i

d ln

{
xτ ∗

n exp

[
−λ∗

n(2x̄)3/2

3U ′
0

]}

dx̄
= −i

λ∗
n

√
2x̄

U ′
0

+ iτ ∗
n

1

x̄
, (9.7)

† Goldstein used an eit time dependence while we use e−it , so that our results are essentially the

complex conjugates of his. Note also that he defined η = y/
√

2X while here η = y/
√

X.



Leading-edge receptivity by adjoint methods 37

0

1

2

3

4

5

6

7

8

0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

8

0–π

–π π

π–π

0

1

2

3

4

5

6

7

8

0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

7

8

0

|(v†(η))|

|u(η)| Arg(u(η))

Arg (v†(η))

(a)

(a)

(b)

(b) (c)

(c)

(d)

(d )

(e)

(e)

( f )
( f )

1
2–π1

2

–π1
2 –π1

2

Figure 3. Modulus and phase of the first LUBLE eigenfunction and its adjoint at x̄ = 6.0.
The labels refer to the different components of the solution according to: (a) u, (b) v/50, (c)
p, (d) u†, (e) v†, (f ) p†. Note that p and v† are identically zero.

where the asterisk ∗ denotes complex conjugation. In particular, for the first mode
(n = 1) we obtain λ∗

1 = 0.687632 × (1 + i) and τ ∗
1 = −0.69213 so that

κ̄
(G)
1 (x̄) ≡ 2.07082(1 − i)

√
x̄ − 0.69213

i

x̄
. (9.8)

Figure 3 displays the various components of the first mode ũ(ỹ) and its adjoint field for
a typical value of the streamwise coordinate (x̄ = 6). The vertical velocity component
ṽ is reduced 50 times for convenience. As the numerical solution shows, the shape of
the LR modes depends slowly on the streamwise coordinate x̄ and consequently the
main characteristics of the eigenfunctions remain almost unaltered over the whole
spatial domain considered. The upper graphs of figure 4 show the real and imaginary
part of the wavenumbers ᾱ, κ̄ and κ̄ (G) at different streamwise positions for the first
Lam & Rott mode. Non-parallel effects are quite strong in the initial region, but they
progressively decrease as we move away from the leading edge. The values of the
non-parallel wavenumber κ̄ predicted by the multiple-scale approach are in excellent
agreement with those derived by Goldstein’s analytical solution and given in (9.8).
The small difference existing in the initial region is probably due to higher-order terms
which are taken into account in different ways in the two asymptotic approximations.
For x̄ larger than 2, however, the two curves are in very close agreement. The lower
graphs of figure 4 compare the real and imaginary part of the complex N factor,

N (x̄) = log (C(x̄)/Ci) = −i

∫ x̄

x̄i

κ̄ dx̄ (9.9)

for the first LUBLE eigenfunctions with the corresponding analytical value (indicated
here by N (G)) obtained by replacing κ̄ in (9.9) with the analytical value κ̄ (G) given
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Figure 4. Goldstein asymptotics vs. multiple-scale expansion (x̄0 = 1.2).

in (9.8). Finally, we conclude this section with a brief discussion on the higher-order
modes of the LUBLE. According to the analytic solution found by Lam & Rott, there
are an infinite number of eigenfunctions corresponding to the infinite roots of the first
derivative of the Airy function Ai. This is not confirmed by the numerical solution of
(7.9); in fact, for small values of the streamwise coordinate x̄, the eigenvalue solver was
able to detect only the first eigenfunction. Higher modes start to appear only at larger
values of x̄; for example, the second mode is found only for x̄ > 9, the third for x̄ > 27
and so on. Figure 5 shows the real and imaginary part of the eigenvalues ᾱk detected
in the range x̄ ∈ [0, 100] and the modulus of the horizontal and vertical velocity com-
ponents for the first three eigenfunctions at x̄ = 50. The magnitude of the imaginary
part of the eigenvalue (which is always negative) becomes smaller and smaller as the
order n of the mode is increased, implying smaller streamwise decay rates.

According to these results, the LUBLE behaves in a way similar to the OSE, whose
number of modes increases with Re. A possible explanation for the discrepancies in
the number of modes predicted by the classical asymptotic theory and our composite
asymptotic approach at moderate values of x̄ can be found in the form of the analytical
solution derived by the matched asymptotic expansion technique. As pointed out by
Goldstein et al. (1983), at a fixed downstream position, the size of the inner layer
tends to increase with the order of the eigenfunction, so that the analytical solutions
for the higher modes become accurate only at much larger values of the streamwise
coordinate x̄. This is actually confirmed by our calculations; note, in fact, how the
maximum of the horizontal velocity component tends to move away from the wall as
the order of the eigenfunction is increased. In view of these results, the set of Lam &
Rott eigenfunctions cannot be complete at finite x̄. Brown & Stewartson (1973) found
another set of modes of the LUBLE. These eigenfunctions propagate at the free-
stream velocity, and the associated disturbances are mainly concentrated near the
outer edge of the boundary layer. The Brown–Stewartson modes decay slower than
the Lam & Rott eigenfunctions, but their evolution does not seem to lead to the
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Figure 5. Higher modes of the LUBLE.

appearance of unstable disturbances. Their presence in the numerical solution of the
linearized unsteady boundary-layer equations has been shown by Hammerton (1999)
marching the LUBLE in different sectors of the complex x-plane. The existence of
these modes does not invalidate the receptivity analysis of the following sections, but
suggests further investigations in order to understand better their role in the evolution
of the disturbances and the connection with the discrete and continuous modes of
the OSE.

10. Extraction of the receptivity coefficient
The asymptotic methods determine the form of the eigenfunctions but not their

coefficients. The receptivity coefficient for any kind of free-stream disturbance can
be evaluated only by comparing the numerical solution of (7.4) with its far-field
asymptotic behaviour given by (7.14). Problem (7.4) represents a linear parabolic set
of differential equations whose solution can be determined with a simple marching
strategy. Here, we proceed by discretizing (7.4) in y with the scheme used for the
eigenvalue problem (7.9) and solving the resulting semi-discrete equations with a
fourth-order fully implicit finite-difference scheme. Another possible approach consists
in integrating the equations using the independent variables x and η. In this way,
the singularity of the wall normal velocity component at the leading edge can be
peeled off and the LUBLE reduce at x̄ = 0 to a set of ordinary differential equations
which can be solved to provide a starting profile for the marching process. Both
methods have been used to march the LUBLE in the complex plane and the results
were accurately compared. When a sufficient resolution near the leading edge and
in the Stokes layer was used, the two numerical approaches returned essentially the
same results. The choice between the two methods is therefore just a matter of taste.
The semi-similar formulation is probably more accurate when the discretization is
performed on a uniform grid. Here, however, a stretched grid with a large number
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of grid points has been used to obtain high accuracy and to capture all the details of
the solution in the leading-edge region.

To test our extraction procedure based on the adjoint field, we confine our attention
to an acoustic free-stream perturbation impinging on the plate at zero angle of attack,
which produces a slip velocity and a pressure distribution of the form

u∞(x̄) = 1, (10.1a)

∂p∞/∂x̄ = −iu∞(x̄). (10.1b)

The initial conditions which must be imposed at the leading edge to start the numerical
computations reduce in this case to

uin(y) = u∞(0), ∀y > 0. (10.2)

Once the boundary and the initial conditions are specified, equations (7.4) are marched
until the function

Rn(x̄, x̄i) =

〈
ṽ0,n exp

[
i

∫ x̄

x̄i

κ̄ndx̄

]
, Dq̃num

〉
(10.3)

approaches a constant value: according to (8.5), this number is exactly the coefficient
Cn(Xi) in the asymptotic expression (7.14) for the nth eigenfunction. The value of this
constant depends on the arbitrary initial point Xi = τ x̄i and on the normalization
used. To make the results independent of x̄i , it is sometimes better to refer to the total
amplitude T (LR)

n (x̄), i.e. the amplitude of the eigenfunction at a given final location
x̄ (see equation (7.14)). In particular, we are interested in determining C1(x̄i) (or
equivalently T

(LR)
1 (x̄)), i.e. the coefficient of the eigensolution which is the precursor of

the unstable TS wave. For this purpose, a simple integration along the real axis does
not produce the expected results. The function R1(x̄, x̄i), in fact, does not tend to a
constant value, but shows some oscillations coupled to an exponential growth. A more
detailed investigation reveals the nature of the problem. Relation (8.5) is based on the
hypothesis that non-parallel effects are negligible or, at least, much smaller than the
component we are trying to extract. The biorthogonality relations from which (8.5)
is derived are valid only for the leading-order approximation and not for the higher-
order correction terms. Thus, if the streamwise variations of the mean flow are larger
in magnitude than the leading-order approximation of the first mode, then R1(x̄, x̄i)
will not represent the receptivity coefficient, but the component of the non-parallel
corrections on ṽ0,1. This is certainly the case when we march (7.4) on the real axis;
non-parallel effects decrease as x̄ increases, but simultaneously the contribution of
the first eigenfunction to the entire solution decays faster in the streamwise direction
owing to the large negative imaginary part of the eigenvalue. A way to solve the
problem is to consider the solution of the LUBLE as an analytic function and move
the integration path onto a ray in the complex plane where the first eigenfunction is
dominant. This procedure, originally suggested by Goldstein et al. (1983), has been
successfully implemented to extract the receptivity coefficient for several kinds of
free-stream disturbances. In order to obtain C1(x̄c), the amplitude of the first mode at
a given point C on the real axis (see figure 6), we integrate (7.4) along the ray OA until
R1(x̄, x̄0) becomes constant. Then we use the asymptotic form of the eigenfunction
(7.14) to return to the real axis along the path AC and to determine the final
amplitude T

(LR)
1 (x̄c). Obviously, if the solution really is analytic, different integration

paths ending in the same point (such as the paths OAC and OBC) must give the
same final result. Several trials have been performed to check the analytic nature of
the solution; all theintegrations confirmed this hypothesis and returned roughly the



Leading-edge receptivity by adjoint methods 41

Real axis

Im
ag

in
ar

y 
ax

is

A

B

CO

Eigenfunction
dominant

Eigenfunction
subdominant 

Figure 6. Marching in the complex plane.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 4 5 6
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

Re(x̄)

|P
1(

x̄,
x̄ 0

)|

Re(x̄)

A
rg

[P
1(

x̄,
x̄ 0

)]

|ỹ|
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(ỹ

)| 
× 

10
8

(a)

(a)

(b)

(b)

Figure 7. The modulus and the phase of the function P1(x̄, x̄0) = R1(x̄, x̄0)/R1(x̄0, x̄0) and the
components of the first eigenfunction in the complex plane: (a) marching, (b) multiple-scales.

same value for T
(LR)
1 (x̄c) (for example we found T

(LR)
1 (x̄ = 1.2) = −0.01185+0.06413i

and T
(LR)
1 (x̄ = 5) = 2.8309 + 1.8639i × 10−8). The upper graphs of figure 7 show the

modulus and the phase of P1(x̄, x̄0) = R1(x̄, x̄0)/R1(x̄0, x̄0) (with x̄0 = 1.2 × (1 + i))
along a ray with Arg(x̄) = π/4: note that this function reaches a constant value at
a moderate distance from the origin. The lower graphs instead show the numerical
solution of the LUBLE at x̄ = 6+6i and the corresponding asymptotic approximation
given by (7.14); it is here evident how the multiple-scale approximation is able to
reproduce all the details of the numerical solution. The value of the amplitude at
this point in the complex plane is quite large, but it decreases exponentially along
the path AC used to return to the real axis. Figures 8 shows the modulus and the
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phase of the total amplitude T
(LR)
1 (x̄) at different streamwise stations on the real axis.

According to our calculations, the magnitude of the perturbation associated with
the first eigenmode is small even in the proximity of the leading edge and decays
exponentially as we move further downstream.

In order to make a comparison with the results given by Goldstein et al. (1983), we
must be able to switch from the normalization adopted here to that implicitly fixed
by the analytical solution of the Lam & Rott modes used by Goldstein (1983) and
given in (9.5) and (9.6). This can be achieved using the ratio Q1(x̄),

Q1(x̄) =

C1(x̄0) exp

[
−i

∫ x̄

x̄0

κ̄1dx̄

](
∂ũ0,1

∂ỹ

)
ỹ=0(

∂2ψG

∂ỹ2

)
ỹ=0

=

T
(LR)
1 (x̄)

(
∂ũ0,1

∂ỹ

)
ỹ=0(

∂2ψG

∂ỹ2

)
ỹ=0

, (10.4)

between the wall shear predicted by the multiple-scale approach and the corresponding
value derived by the analytical solution of the eigenfunctions and given explicitly (see
Hammerton & Kerschen 1996, p. 254, equation 3.33) by(

∂2ψG

∂ỹ2

)
ỹ=0

=
0.4356

2
(1 − i) exp

[
−2λ1x̄

3/2

3U ′
0

]
x̄(τ1). (10.5)

In (10.4) x̄0, denotes a chosen starting position while the subscript 1 refers to the
mode number. Figure 8 shows the variation of the real and imaginary part of the
function Q1(x̄) at different streamwise positions on the real axis. After a short initial
stage characterized by a sharp variation, the function Q1(x̄) approaches a constant
value, indicating that the results obtained using our numerical procedure and those
derived through Goldstein’s analytical approach are totally equivalent. In view of this
conclusion, the new value assumed by the receptivity coefficient, indicated here as
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C
(G)
1 , is found performing the limit

C
(G)
1 = lim

x→∞
Q1(x̄). (10.6)

According to figure 8, C
(G)
1 is roughly equal to −0.439389 − 0.845307i, a value

in good agreement with the results obtained by Goldstein et al. (1983) and by
Hammerton & Kerschen (1996, 1997), who, respectively, found C

(G)
1 = −0.45+0.855i

and C
(G)
1 = −0.41 + 0.841i. (Note that owing to the different time dependence used,

our value must be compared with the complex conjugate of theirs.)

11. Matching with the OSE eigenfunction
As pointed out by Goldstein (1983), the wavelength of the Lam & Rott eigen-

functions decreases continuously as they evolve in the streamwise direction. This
wavelength-reduction process produces at some downstream location, non-negligible
cross-stream pressure fluctuations which invalidate the boundary-layer approximation.
In order to roughly locate the region where this occurs, we can take advantage of the
numerical results of § 9 which show that α�

LR ∼
√

x̄/��
c . With such an assumption and

considering that for the Lam & Rott modes d/dx� ∼ α� and d/dy� ∼ 1/δ�, it is easy
to show that the asymptotic eigenfunctions are certainly invalid in the region

ω�δ�

U�
∞

√
x̄ ∼ O(1) ⇒ x̄ ∼ F −1/2. (11.1)

Here, and further downstream, the flow is locally parallel, but the pressure terms are
not negligible so that the correct asymptotic approximation of the LNSE is given by
the stability equations, (5.3) and (5.4). The bound (11.1) can be made more accurate
considering the magnitude of the different terms in the LNSE: as pointed out by
Goldstein (1983), in fact, the LUBLE breaks down even at smaller value of x̄ and
precisely for

x̄ ∼ F −1/3, (11.2)

which corresponds to the classical triple-deck scaling of the neutral branch. On the
other hand, we have seen that the OSE is certainly invalid in the region ωx�/U�

∞ ∼
O(1); in the leading-edge area, in fact, non-parallel effects are important and the flow
is described well by the LUBLE. Figure 9 sketches the different streamwise asymptotic
regions of the boundary layer.

We now check the existence and the extension of an overlapping region M, i.e. a
region where both approximations are simultaneously valid. Goldstein (1983), using
matched asymptotic expansions, showed that in the limit F → 0, the solutions of
the OSE match the eigenfunctions of the LUBLE. Since we did not derive analytical
solutions of our equations we cannot implement the usual matching strategy. For
this reason, we developed a new procedure apt to evaluate finite-Reynolds-number
effects and to determine the extent of the overlap domain for different values of the
frequency parameter F . To achieve these results, we rely once again on the properties
of the adjoint eigenfunctions. Grosch & Salwen (1978) showed that, with a proper
normalization, the direct and adjoint nth discrete modes of the Orr–Sommerfeld
equations un and vn satisfy the relation

〈vn exp(iαnx), Lun exp(−iαnx)〉 = 1 ∀x, (11.3)

where L = i (∂HOS/∂α) is the operator given in (A 2). For a parallel mean-flow
profile, ue−iαx and veiαx represent, respectively, the exact solutions of the linearized
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Navier–Stokes operator and of its adjoint. Relation (11.3) can be extended to include
cases in which the base flow is slowly varying in the streamwise direction. In these
circumstances, the leading-order solutions for the direct and adjoint nth modes of the
LNSE are given by (5.8) and (5.10). Thus, from (11.3), the amplitude An(X0) of the
nth TS eigenfunction can be retrieved at different streamwise positions by projecting
q(LNSE)

n onto q†(LNSE)
n , i.e. 〈

q†(LNSE)
n , L q(LNSE)

n

〉
= An(X0). (11.4)

We now use this property to check the existence and the extent of the overlapping
region M. By definition, in this area the asymptotic solution of the LUBLE must
asymptotically match the solution of the OSE (5.8), i.e.

q(LNSE)
n (X, y) − q(LUBLE)

n (X, y) → 0 as F → 0 ∀y, (11.5)

where q(LUBLE)
n (X, y) is explicitly given by (7.16). Considering (7.16), we can therefore

define the overlap domain M as the set

M=
{
X :

〈
q†(LNSE)

n , L q(LUBLE)
n

〉
≈ cost

}
. (11.6)

Using the analytic form of the two solutions, it is useful to rewrite the projection as〈
q†(LNSE)

n , L q(LUBLE)
n

〉
= Cn(x̄0)Mn(x̄, x̄0), (11.7)

where Cn(x̄0) is the coefficient of the nth Lam & Rott eigenfunction, Mn(x̄, x̄0) is the
function

Mn(x̄, x̄0) =
〈
v

†(OS)
0,n , L u(LR)

0,n

〉
exp

[∫ x̄

x̄0

κ̄ (OS)
n −κ̄ (LR)

n dx̄

]
. (11.8)

and the superscripts (OS) and (LR) refer, respectively, to the Orr–Sommerfeld and
Lam & Rott modes. The function (11.8) measures the accuracy of the approximation
obtained by replacing the nth TS mode with the nth Lam & Rott eigenfunction.
The presence of the exponential term in (11.8) produces a sensible streamwise
growth (or decay) of Mn(x̄, x̄0) wherever a considerable difference between the two
wavenumbers is found. From a practical point of view, the existence and the extent of
a matching region can therefore be studied by monitoring the behaviour of Mn(x̄, x̄0)
and identifying an area over which this function assumes approximately a constant
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value. In particular, for n = 1, the amplitude of the unstable TS wave A1(x̄0) can be
retrieved in M by multiplying M1(x̄, x̄0) with the value of the receptivity coefficient
C1(x̄0) previously extracted. In this way, it is possible to decouple the matching
procedure from the receptivity calculations. Once the extension of the matching
region has been studied, the total amplitude T (OS)(x̄) of the unstable TS wave at some
downstream position can be evaluated using

T (OS)(x̄) ≡ A(x0) exp

[∫ x̄

x̄0

κ̄ (OS)
n dx̄

]
= C1(x̄0)M1(x̄1, x̄0) exp

[∫ x̄

x̄1

κ̄ (OS)
n dx̄

]
, (11.9)

where x̄1 ∈ M. According to our non-dimensionalization, T (OS)(x̄) represent, the
maximum value of the streamwise velocity component of the TS wave non-
dimensionalized on the free-stream perturbation amplitude.

In figure 10(i) we compare the imaginary part of the wavenumbers κ
(OS)
1 and

κ
(LR)
1 , non-dimensionalized on the convective wavelength ��

c , for several values of the
frequency parameter F , while in figure 10(i) we show the modulus of the horizontal
velocity components of the OSE and LUBLE eigenfunctions at x̄ = 6. From a
graphical point of view it is clear that the two asymptotic solutions tend to match as
F → 0. A more quantitative analysis is provided by figures 11 and 12, which show
the modulus of the function M1(x̄, x̄0) (with x̄0 = 1.05) for values of the frequency
parameter in two different ranges. In figure 10(ii), a smaller streamwise domain
has been used in order to show better the behaviour of the function in the region
close to the leading edge. According to our results, a definite matching region exists
only for values of the frequency parameter smaller than 10−6. In such cases, the
width of the overlap domain tends to increase progressively as F is lowered. On the
other hand, for values of F larger than 10−6, no matching is clearly visible. This
behaviour indicates that terms neglected in the derivation of the LUBLE are still
important in the leading-edge area. Although not very accurate in this circumstance,
the asymptotic procedure based on the complementary approximation (7.3) can still
be used to perform quantitative analysis of the receptivity process. Note, in fact, that
for all values of F , the curves representing |M1(x̄0, x̄)| tend to flatten as the leading
edge is approached, showing that the Lam & Rott eigensolutions best approximate the
OSE modes in this part of the boundary layer. This behaviour suggests performing
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the matching as close as possible to the leading edge; in this way the error due
to terms neglected in the boundary-layer approximation can be minimized. As an
example of this procedure, figure 13 shows the total amplitude of the TS wave
generated by the leading-edge receptivity process at different streamwise positions
and for different values of the frequency parameter F . The data refer to the case
of an acoustic wave impinging horizontally on the flat plate. The matching has
been performed at x̄1 = x̄0 = 1.05, i.e. using the closest point to the leading edge for
which we could determine the Lam & Rott eigenfunctions. If the value of x̄1 is
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further decreased, in fact, the eigenvalue solver exhibits a slow convergence and, at
the end, fails to detect the eigenfunction jumping towards a spurious solution. The
range of frequencies investigated is quite common in practical applications, but at
the same time corresponds to the case for which the numerical matching procedure
based on the adjoint eigenfunctions is less reliable (as shown in figure 12, in fact, no
overlap domain exists for these frequencies). As F is lowered, the neutral points move
downstream while the amplification region tends to enlarge. As a result, the amplitude
at branch II depends on the decay and growth rate experienced by the wave in these
different regions of the boundary layer. The higher values of F considered in figure
13 correspond to cases close to the top of the neutral stability loop. The amplitudes
at the first neutral point are not extremely small since, for these waves, the region
upstream of the neutral branch is quite short. On the other hand, the width of the
amplification region is limited and consequently the amplitude at the second branch is
still small. The TS waves corresponding to the lower frequencies experience, instead,
a stronger decay rate before reaching the first branch, but this is compensated by a
larger amplification region. The higher frequency in figure 13 is F = 230 × 10−6 and
corresponds to the worst case among those considered in this paper for the numerical
matching procedure. The same frequency has been used by Haddad & Corke (1998)
to study the effect of the nose radius on the leading-edge receptivity process. We can
therefore test our numerical matching procedure comparing our results with those
obtained through DNS. Unfortunately, Haddad & Corke (1998) do not give the
maximum amplitude of the perturbation associated with the TS wave at branches
I and II for the zero-Strouhal-number case. This information can be retrieved by
considering figure 13 (b) of their paper and comparing the magnitude of the local
oscillations at a given height above the wall with the shape of the local eigenfunction.
In this way, we obtained at branch II |T (OS)(x̄NII

)| ≈ 3.57 × 10−4, a value in good
agreement with the result based on our asymptotic approach, which instead returned
|T (OS)(x̄NII

)| ≈ 3.43 × 10−4.
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Case Present study Wanderley & Corke (2001) Saric & White (1998)

Geometry Flat plate MSE 20:1 MSE 20:1
F × 106 90 90 88-92
|T (OS)(xNI

)| 6.5 × 10−5 0.046 0.050 ± 0.005

Table 4. Branch I TS amplitude for the 20:1 MSE and a flat plate.

According to figure 13, for frequencies of interest in practical applications, the
amplitude is in the range [0.001 : 0.1]. Assuming now that for a disturbance that
might contribute to transition, its branch II amplitude is about 1% of U�

∞, these
results suggest that for this particular case it is unlikely to observe transition owing
to perturbations generated by a linear mechanism at the leading-edge. This, however,
does not mean that the leading-edge mechanism is irrelevant to the transition
process. In fact, other kinds of disturbance can produce much larger receptivity
coefficients; Kerschen et al. (1990), for example, showed that oblique sound waves
can give rise to unstable waves an order of magnitude larger than those produced by
acoustic disturbances propagating parallel to the plate. Moreover, for more complex
geometries, the existence of an adverse pressure gradient region close to the leading
edge might considerably affect the growth or decay rate of the perturbation inside
the boundary layer. An example of this effect is offered by the receptivity on a
finite-thickness flat plate with an elliptical leading edge. The ellipse has an adverse
pressure gradient region and two sites of receptivity, one at the leading edge and one
at the point where the ellipse joins the flat plate. In order to minimize the effect of
the joint, Saric, Wei & Rasmussen (1995) and Saric & White (1998) used a ‘modified
super ellipse’ (MSE). This has a variable exponent for the ellipse long axis to give zero
curvature at the joint location. Wanderley & Corke (2001) studied this configuration
performing a direct numerical simulation of the LNSE. Good agreement was found
with the experimental results obtained by Saric et al. (1995) and Saric & White (1998).
Table 4 compares the TS amplitude at branch I for the modified super ellipse with
aspect ratio 20:1 and a simple flat plate. The data show that branch I amplitudes for
the finite-thickness flat plate are about three orders of magnitude larger than those
for the infinitely thin flat plate, confirming the strong influence of the adverse pressure
gradient region located at the joint between the plate and the mse.

12. Conclusions
In this paper we have developed a new numerical technique for the extraction of

the receptivity coefficient which is easy to apply even in complex flow configurations.
The two streamwise asymptotic regions into which the boundary layer is divided are
studied with a unified approach based on the determination of composite differential
equations describing the local properties of the flow field. This is achieved by
applying a multiple-scale expansion to the governing equations and rearranging
higher-order terms in a way that to builds regular leading-order problems. Non-
parallel corrections due to the slow streamwise growth of the base flow are taken
into account by imposing a solvability condition on the higher-order problems. The
resulting eigenvalue problems are solved numerically with a simple iterative algorithm.
The biorthogonality properties of the adjoint operators are then used to extract
the receptivity coefficient and to match the LUBLE and the OSE eigenfunctions.
The extent of the matching region is evaluated numerically for different values
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of the frequency parameter in order to highlight the equivalence of the asymptotic
approximations used in the different regions of the boundary layer. This new procedure
has been tested for the case of an acoustic wave impinging on an incompressible flat-
plate boundary layer, and results have been compared with those derived by Goldstein
(1983), Goldstein et al. (1983) and Hammerton & Kerschen (1996, 1997). Numerical
results show that in the lower frequency range, a definite matching region is clearly
visible, but this shortens progressively as F is increased. At moderate values of F ,
instead, no matching exists; in these circumstances, in fact, the pressure fluctuations,
neglected in the derivation of the LUBLE, are still important in the leading-edge area
and must be properly taken into account whenever a precise estimate of the receptivity
coefficient is sought. In these cases, although not very accurate, the novel matching
procedure can still be used to obtain quantitative information about the amplitude
of the generated TS waves. This is achieved by performing the matching as close as
possible to the leading edge, in order to minimize the error due to the boundary-layer
approximation. Using this procedure, we evaluated at different streamwise locations
and for different values of F , the amplitude of the perturbation associated with the
TS wave generated by an acoustic wave impinging horizontally on the flat plate.
A comparison of the results at F = 230 × 10−6 with the DNS data of Haddad &
Corke (1998) has shown good quantitative agreement. These preliminary results seem
to indicate that the numerical asymptotic approach presented in this paper can be
used to obtain qualitative and quantitative information on the receptivity process in a
range of frequencies of interest for practical applications, without necessarily relying
on the more expensive DNS approach.

The authors wish to acknowledge a number of helpful discussions at DAMTP with
Professor Nigel Peake. We also would like to thank Professor Haddad to provide us
the DNS data used for the comparison. F. G. has been supported by the EU under
the Marie Curie Fellowship Programme.

Appendix A. Details of the stability operators
The operators HOS(ω, α, Re), L(α, Re) and M(α, Re, ε1) involved in problems

(5.3) and (5.4) are derived from the multiple-scale expansion (5.2). In particular
HOS(ω, α, Re) is the classical Orr–Sommerfeld operator

HOS =




i(ω − αUB) +
1

Re

(
α2 − ∂2

∂y2

)
∂UB

∂y
−iα

0 i(ω − αUB) +
1

Re

(
α2 − ∂2

∂y2

)
∂

∂y

−iα
∂

∂y
0




,

(A 1)

while L(α, Re) and M(α, Re, ε1) are defined, respectively, by

L = i
∂HOS(α)

∂α
=




UB +
2iα

Re
0 1

0 UB +
2iα

Re
0

1 0 0


 (A 2)

and
M(α, Re, ε1) = M1(α, Re) +

ε

ε1

M2, (A 3)
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with

M1 =




i

Re

∂α

∂X1

0 0

0
i

Re

∂α

∂X1

0

0 0 0


 (A 4)

and

M2 =




∂UB

∂X
+ VB

∂

∂y
0 0

0
∂VB

∂y
+ VB

∂

∂y
0

0 0 0


 . (A 5)

Inspection of (A 1) reveals that the leading-order problem (5.3a) contains terms
(those multiplied by ε = Re−1) which vanish in the limit ε → 0. Removing these
terms, however, leads to a singular problem, since the highest derivatives in y of
the Orr–Sommerfeld operator are lost and with them disappears the possibility of
enforcing a certain number of boundary conditions. In a classical approach, this
problem is overcome by the use of a multi-deck expansion which provides a link
between the two parameters ε1 and ε. In this paper, however, the aim is to build
a uniformly valid approximate differential equation by combining together all terms
that are dominant in at least one of these decks, or, in other words, by retaining those
components which would lead to a singular problem if omitted. Since moving terms
from higher to lower orders does not alter the general accuracy of the approximation,
the composite asymptotic expansion (5.2) and the resulting composite equation are
not uniquely determined. Here, we decided to retain at O(ε0

1 ) only those terms in ε

and ε1 that do not vanish for a truly parallel mean flow. Other choices are, however,
possible; we tested some of them to check the differences. Substantial deviations
in the results were observed only in a region close to the leading edge where the
multiple-scale approximation is not valid anyway.

Appendix B. Details of LUBLE operators
The operators D, B1(Sr) and B2(Sr, τ, ε2) involved in (7.7) are defined as

D=


 UB 0 0

0 0 0
1 0 0


 , (B 1)

B1 =




i − 1

Sr

∂2

∂y2

1

Sr

∂UB

∂y
0

0 0
∂

∂y

0
1

Sr

∂

∂y
0


 (B 2)

and

B2 =
τ

ε2




∂UB

∂X
+ VB

∂

∂y
0 0

0 0 0
0 0 0


 . (B 3)
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Note that B1 contains terms which involve neither the streamwise derivatives of the
fluctuation quantities, grouped in the operator D, nor terms including VB or the stream-
wise derivatives of the mean flow, which are instead listed in B2. With this choice, the
two problems (7.9) and (7.10), describing the far-field behaviour of the LUBLE and
obtained using the multiple-scale expansion (7.8), can be directly derived from (5.3)
and (5.4) neglecting in the operators HOS, L, M1 and M2 those terms which are of higher
order in a boundary-layer approximation. With the previous definitions, the leading-
order problem (7.9) contains terms which are formally O(τ ). From a practical point of
view, the minimal composite regular problem is obtained by retaining at leading order
only the second derivative of u and the term involving ṽ in the momentum equation,
and the first derivative of ṽ in the continuity equation. Keeping other O(τ ) terms
does not modify the overall order of accuracy of the approximation, but leads to a
different leading-order problem. As for the OSE, numerical results have confirmed
the equivalence of all these formulations: important differences, in fact, were observed
only in a small region around Sr ∼ 1, where the multiple-scale approximation breaks
down. The leading-order problem chosen for the present analysis is particularly
convenient: in fact, from a numerical point of view, problems (7.9) and (7.10) can
be derived and solved with simple algebraic manipulations of the matrices used to
march the parabolic equation (7.7).
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